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Constrained basin stability for studying transient phenomena in dynamical systems
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Transient dynamics are of large interest in many areas of science. Here, a generalization of basin stability (BS)
is presented: constrained basin stability (CBS) that is sensitive to various different types of transients arising from
finite size perturbations. CBS is applied to the paradigmatic Lorenz system for uncovering nonlinear precursory
phenomena of a boundary crisis bifurcation. Further, CBS is used in a model of the Earth’s carbon cycle as a
return time-dependent stability measure of the system’s global attractor. Both case studies illustrate how CBS’s
sensitivity to transients complements BS in its function as an early warning signal and as a stability measure.
CBS is broadly applicable in systems where transients matter, from physics and engineering to sustainability
science. Thus CBS complements stability analysis with BS as well as classical linear stability analysis and will
be a useful tool for many applications.
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I. INTRODUCTION

Many fields of science analyze dissipative dynamical
systems in terms of their attractors. Thus it is an important
challenge to quantify the stability of attractors with respect to a
given perturbation. The most popular method is linear stability
analysis, which considers infinitesimal perturbations. Menck
et al. [1] suggest to complement this linear measure with
basin stability (BS), which accounts for finite and even large
perturbations. The application of BS to power grids has yielded
novel mitigation strategies against superoutages [2,3]. BS is
computed by estimating the volume of an attractor’s basin.
Therefore, it is not sensitive to different forms of transient
dynamics. However, transient phenomena in complex systems
are of large interest in many areas of science, such as climatic
and, more generally, global change in Earth system science [4],
epileptic seizures in neuroscience [5], ecosystem transitions in
ecology [6], as well as in the previously mentioned study of
super outages in power grids [2,3]. For example, in the case of
climate change [4] and the great acceleration [7] as transient
phenomena in the global social-environmental system [8,9],
major efforts are invested into studying the maximum global
mean temperature and its timing along the trajectory due
to anthropogenic greenhouse gas emissions. Moreover, the
model- and data-driven analysis of transient global change
trajectories underlies many recently proposed frameworks for
sustainable development such as tolerable environment and
development windows [10], planetary boundaries [11,12], and
the safe and just operating space for humanity [13].

Making BS sensitive to transients, we generalize it to
a family of stability measures termed constrained basin
stabilities (CBSs). As opposed to BS, CBS is not computed
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from the entire basin of an attractor but only from a subset
of the basin. The subset is defined by a generic constraint
imposed on the transients. Thus CBS is sensitive to transients
while maintaining the intuitiveness and simplicity of BS. To
illustrate how CBS complements BS, we choose two specific
constraints on transients, one based on the confinement of
transient trajectories to certain regions in phase space and one
based on transient duration, and apply them to the Lorenz
system and a global carbon cycle model, respectively. In the
former example, CBS anticipates a boundary crisis bifurcation.
In the latter, we show that CBS represents a more intuitive
measure for stability than BS because CBS reflects not only
that perturbation-induced transients return to the attractor but
also that they do so within a desirable time interval.

This paper is structured as follows. In Sec. II we introduce
CBS and discuss some of its properties used in the further
analysis. In Sec. III we present two examples of CBS analysis
in dynamical systems: the paradigmatic Lorenz [14] model and
a global carbon cycle model proposed by Anderies et al. [15].
Then, in Sec. IV we discuss the relevance of CBS and
how it differs from established stability concepts. The paper
concludes with closing remarks.

II. METHODS

Let the (not necessarily analytic) vector valued function
f represent an autonomous potentially multistable dynamical
system ẋ = f (x), where x ∈ Rn, and let φt (x0) be the system
state at time t on a trajectory starting at x0 at t = 0. The
basin stability SB(A) of an attractor A of this system quantifies
the probability that after a finite size perturbation trajectories
return to A [1]. Perturbations within the attractor’s basin B(A)
return but the remaining ones fall into a different attractor.
The probability distribution of perturbing a trajectory on the
attractor to the state x is given by ρ(x). Thereby, BS is formally
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defined as

SB(A) =
∫

�

dxnρ(x)1B(A)(x), (1)

where � denotes the state or phase space of the dynamical
system and the indicator function is

1B(A)(x) =
{

1 if x ∈ B(A),
0 else. (2)

BS can be computed quickly once an attractor’s basin is given:
it equals the mass of ρ that is supported by the basin. However,
in practice, the basin of attraction is usually not known and
needs to be determined first. For this purpose, initial conditions
are sampled according to the perturbation density ρ and then
integrated until they reach an attractor. Thus, in computing BS
only the long-term limit of the trajectories is used to determine
if an initial condition lies in the basin of attraction. Therefore,
by construction, BS does not depend on transient motion.

To generalize BS, here we propose instead to use the
properties of transients to define a class of stability measures
that we term constrained basin stabilities (CBSs). Calculating
CBS requires a computational effort similar to that needed
for BS, but CBS reveals additional information about the
system that is encoded in the transient trajectories. We define
a transient as the set of points belonging to the part of the
trajectory between the initial condition x(0) = x0 and reaching
the attractor A,

T (x0) = {φt (x0) ∈ �\A | t � 0}. (3)

The fact that we define the attractor not to be part of the
transient makes a difference for example in the case of
trajectories induced by nonsmooth flows where an attractor
may be reached within finite time. The idea of CBS is that a
region in phase space is identified by some constraint on the
transients starting from a subset of phase space

C = {x ∈ �\A| the transient from x satisfies a constraint}.
(4)

In other words, the transients starting from this conditioned
set C satisfy the given constraint. For instance, we can choose
C to be the set of states x the transients starting from which
exhibit monotonicity in the x1 component. This is equivalent
to demanding that the projection of a transient’s velocity onto
the basis vector e1 in x1 direction is nonvanishing. Thus the
conditioned set is Cmon = {x ∈ �\A|f (φt (x)) · e1 �= 0 ∀ t >

0}. If x1 represents a population, the set Cmon is the set of initial
conditions which do not lead to a population overshoot [16].

Incorporating an arbitrary constraint (not necessarily mono-
tonicity) as an additional factor in Eq. (1), we formally define
CBS as

SC
B (A) =

∫
�

dxnρ(x)1C(x)1B(A)(x). (5)

The product of the two indicator functions checks whether
a perturbation is inside of the attractor’s basin and at the same
time inside the region transients originating from which satisfy
the prescribed constraint. Figure 1 illustrates the regions in
a schematic two-dimensional phase space that are relevant
for computing BS and CBS for a fixed point. Three useful

FIG. 1. Subspaces of a schematic two-dimensional phase space
containing a fixed point x�: perturbations are sampled from the
domain of the perturbation probability density ρ (area within dashed
line). Their transients return to the fixed point when sampled from the
basin of attraction B(x�) (gray area). The set C (white within solid
line) is the set of initial conditions which lead to transients that satisfy
a given constraint, e.g., on the x1 component. While BS is computed as
the fraction of perturbations within the basin of attraction, CBS is the
fraction of perturbations within the intersection C ∩ B(x�) (striped
area). Thus CBS reflects the stability with respect to perturbations
whose transients fulfill a given constraint.

properties of CBS follow directly from its definition. First,
since 1C(x) � 1,

SB(A) � SC
B (A). (6)

Secondly, let {Ci}i∈I be a partition of �, then∑
i∈I

S
Ci

B (A) = SB(A). (7)

Thirdly, if C1 ⊂ C2 then

S
C1
B (A) � S

C2
B (A). (8)

The novelty of CBSs is that they integrate information about
the transients into the asymptotic framework of BS. This
information is encoded in a set C of states the transients
originating from which satisfy a given requirement, such as
monotonicity in the previous example. We suggest classifying
these requirements as static, dynamic, and integrated, depend-
ing on how much information is necessary to find out which
desirable region of phase space corresponds to them as follows.
(i) Static requirements a priori define a phase space region
�′ ⊂ � that must not be entered by the transient. No further
knowledge of the system or its dynamics is required. Examples
are planetary boundaries in Earth system dynamics [11,12],
minimum or maximum operating temperatures of a device or
the evaluation of external functions (not f ) of the system, e.g.,
the performance of a second system that depends on the system
state x. (ii) Dynamic requirements depend on velocity, thus
more knowledge about the system is required: the dynamics,
i.e., f , must be known. Using this knowledge, a region similar
to �′ is defined. Consider, for example, a roller coaster that
must not exceed a certain velocity or acceleration or the
requirement of monotonicity in economic output to exclude
the burst of market bubbles. (iii) Integrated conditions depend
not only on the current state of the transient but also on its past,
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i.e., they operate on an infinite dimensional space and memory
effects are possible. Despite this complexity, testing integrated
conditions is often easy in practice as can be seen from the
following examples: imposing a limited number of opinion
changes of a political party, thresholding the time needed to
reach an attractor, integrated damage in a climate model or
imposing a minimum average power output of a wind farm per
time interval. Note that each of the constraints implies a binary
decision: CBS identifies a qualitative property in a transient.

In order to implement CBS [Eq. (5)] numerically, we need
to discretize it. For simplicity of presentation, we choose the
attractor to be a fixed point, A = {x�}, and consider a uniform
distribution ρ of N initial conditions drawn from some subset
of phase space approximated by a set of sampling points xi ,
i ∈ {1, . . . ,N} drawn at random from the phase space volume
in question. This results in

SC
B (x�,ε) = 1

N

N∑
i=1

1C(xi) �(ε − dmin), (9)

where dmin is the minimal state-space distance (within the finite
simulation time) between the fixed point x� and the transient
T (xi) and �(x) is the Heaviside function.

If a trajectory reaches a distance smaller than the threshold
ε from the attractor within finite simulation time, we regard it
to have reached the attractor. Furthermore, the uniformity of ρ

implies ρ(xi) = N−1. Operationally, for any attractor A (not
necessarily a fixed point), we proceed as follows: (1) sample
an initial condition xi according to ρ; (2) integrate xi in time
until it has reached an attractor; (3) if the reached attractor is A,
count xi towards SB(A); (4) check if the transient originating
from xi satisfies the constraint, if so count xi towards SC

B (A);
(5) increase i → i + 1; repeat until i = N .

The computational procedure outlined above by which we
determine BS and CBS allows us to estimate the uncertainty
of our estimates of BS and CBS. Since we consider a uniform
perturbation ρ, we are effectively drawing initial conditions at
random from the subset R of phase space where ρ is nonzero.
The fraction p of the volume the basin B(A) occupied by
R is the true BS, i.e., the probability that we draw an initial
condition from B(A) at random. This implies that, effectively,
our estimate of BS after drawing N initial conditions comes
from a binomial distribution with expectation value p = SB ,
which leads to the standard deviation

σSB (A) = 1

N

√
SB(1 − SB)N = 1√

N

√
SB(1 − SB). (10)

Equation (10) also holds when SB(A) is replaced by SC
B (A),

which follows from an argument analogous to the one above. It
is important at this point to note that nonuniform distributions
ρ are also admissible and make sense in certain applications
when some perturbations need to be weighted more than
others. However, an error estimate as in Eq. (10) is less
straightforward to obtain for nonuniform ρ.

III. APPLICATION

To illustrate the versatility of CBS, we give examples of
specific constraints in the paradigmatic Lorenz system [14]
and in a global carbon cycle model by Anderies et al. [15].

In the Lorenz63 (L63) model we show how CBS can reveal
precursory phenomena before the onset of a boundary crisis
bifurcation. In the Anderies model, we argue that CBS reflects
our intuition of stability of a desired state against perturbations
better than standard BS. We illustrate in both examples how
CBS can generate important new insights into the dynamics of
complex systems, while being simple enough to be amenable
to a quick interpretation.

A. Anticipating a boundary crisis bifurcation

The L63 system [14]

ẋ = σ (y − x), (11)

ẏ = rx − y − xz, (12)

ż = xy − bz (13)

is a conceptual model of Rayleigh-Bénard convection. It is
famous for exhibiting chaotic dynamics along with a rich
dynamical behavior. Setting σ = 10 and b = 8/3, we begin
by summarizing the bifurcation structure as the parameter
r ∈ [9,26] increases. At first, two stable fixed points exist
at x(±)

� = (±√
b(r − 1), ± √

b(r − 1),r − 1), corresponding
to left and right turning convection rolls, respectively. At
r1 = 13.926 a chaotic saddle appears. At r2 = 24.06 this
chaotic saddle undergoes a boundary crisis and becomes
attractive. The fixed points lose their stability at r3 = 24.74.
Our goal is to anticipate this boundary crisis [17]. To this
end, we choose a specific condition sensitive to long (chaotic)
transients, since these are precursors of the crisis. With the
following static constraint, we discriminate between transients
that stay close to one of the fixed points x+ or x− (i.e., one
sense of convective overturning) and chaotic transients that
flip between them:

C± = {x ∈ � |φt (x) · n �= 0 ∀t > 0}, (14)

where the difference vector n = |x+
� − x−

� |−1(x+
� − x−

� ) is the
normal of a plane H containing the origin that separates the
phase space into two symmetric halves. Figure 2 shows two-
dimensional cross sections of the three-dimensional basins
of attraction B(x±

∗ ) and their intersections C± ∩ B(x±
∗ ) with

the sets C± defined above for two different values of the
parameter r .

BS and CBS are computed for 15 625 initial conditions
sampled from the uniform perturbation distribution ρ(x) =
1

40�(20 − |x|) 1
40�(20 − |y|) 1

30�(15 − |z|), which describes a
box that roughly covers the attractor. To compute BS, we
evolve each initial condition in time until it reaches either one
of the fixed points or the chaotic attractor. The termination
condition in the former case is that the trajectory enters an
ε-ball around x±

� ; here ε = 10−4. In the latter case, we iterate
until the trajectory has crossed the plane H a large (but
computationally feasible) number m of times; here m = 400.
Figure 3 shows the resulting BS and CBS. The BS and CBS
curves are identical for both fixed points due to their symmetry.
Thus only the values for the positive fixed point are shown.
For any conditioned set C and its complement C = �\C,
Eq. (7) reduces to SB(A) = SC

B (A) + SC
B (A). This implies that

the difference between the two stability measures reflects the
fraction of the basin from where (long) chaotic transients
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FIG. 2. Illustrations of the phase space structure of the L63
system defined by Eqs. (11)–(13). Both panels show cross sections,
obtained by cutting along the plane containing the origin with normal
(1,1,0), of the basins of attraction B(x±

∗ ) and their intersections
C± ∩ B with the sets C± for r = 15 (upper panel) and r = 23 (lower
panel). In both panels, the blob-shaped region around each fixed point
(black dots) is C± ∩ B. Top panel: the total basin of a fixed point is
composed of successive layers: it is given by C± ∩ B combined both
with the region in the respective other half-space (x > 0 or x < 0)
directly surrounding C± ∩ B and with the next layer of the same
color in the fixed point’s half plane. In the lower panel (coloring
identical), the fractal structure of the basins, visible as intermingled
green and blue sets, is apparent; it is associated with transient chaos.
One observes that the fraction of the window covered by the sets C±

shrinks as r increases. This illustrates the general behavior observed
in the L63 system and quantified by CBS, namely that the volume
fraction of the three-dimensional sampling region occupied by C±

decreases continuously as r approaches r3.

originate. The magnitude of CBS reflects the opposite, i.e.,
the part of the basin from where trajectories fall into the fixed
point without crossing H . For 9 � r � 14, the two stability
measures are constant but differ in their value. For 14 � r �
23 the fraction of chaotic transients increases continuously (in
agreement with Fig. 2), while the basin volume, i.e., BS, does
not change. Between r ≈ 23 and the bifurcation point at r2, the

SB

SB
C

FIG. 3. BS [green (upper) line] and CBS [red (lower) line] of the
positive fixed points in the L63 system as the parameter r is varied.
From left to right, the vertical lines indicate the appearance of the
chaotic set (r1), the boundary crisis (r2), and the stability loss of the
fixed point (r3). The difference between the two curves represents the
fraction of the basin from where chaotic transients evolve. Note that
BS exhibits a jump at r2 which is blurred by the finite simulation time:
the simulation stopped before all (increasingly long) transients had
reached the fixed point. Because of the system’s x-y symmetry the
negative fixed point has the same BS and CBS. The gray envelopes
represent ±3σ according to Eq. (10).

basins of the fixed points collapse as the fraction of trajectories
exceeding m crossings grows rapidly. In the limit m → ∞,
the basin size changes discontinuously at r2: the fraction of
the basin that corresponds to the chaotic transients at r < r2

suddenly feeds the newly born attractor when r > r2. In Fig. 3
the drop is not discontinuous due to finite simulation time: long
transients do not reach the fixed points before the simulation is
ended. From r2 to r3, both stability measures coincide because
chaotic transients are absent due to the chaotic saddle now
being attractive. For r > r3, both BS and CBS vanish. In short,
with BS alone we cannot anticipate the crisis at r2. However,
combining it with CBS, the emergence of the chaotic set can be
observed by the increasing fraction of chaotic transients within
the fixed points’ basins. Although CBS does not predict the
bifurcation at r2, it does indicate the approaching crisis, while
BS does not and thus it substantially complements the original
BS by revealing additional information on the basin structure.

B. Anderies carbon cycle model

Anderies et al. [15] present a conceptual model of global
carbon cycle dynamics in the Earth system formulated as
a mass balance between three carbon stocks x = (ca,ct ,cm)
which are nondimensional atmospheric ca , terrestrial ct , and
marine stocks cm, respectively. Formally, the model for the
preindustrial case is given by

ċt =PEN (ca,ct ) − H (ct ), (15)

ċm =D(ca,cm), (16)
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where total carbon in the system is conserved such that
ca + ct + cm = 1 and ca,ct ,cm � 0. The expressions
describing the derivatives ċt ,ċm are defined as follows:
a harvesting term H (ct ) = αct , where α determines the
human offtake of terrestrial carbon stocks, a diffusion term
between atmosphere and ocean D(ca,cm) = 0.05(ca − cm),
and net ecosystem productivity PEN (ca,ct ) =
2.5ct (1−ct/0.7){1.5c0.3

a 220T (ca)3 exp[−7T (ca)]−110T (ca)4

exp[−5T (ca)]} with T (ca) = 0.8ca + 0.2.
It is found in [15] that any initial condition converges to

one of two fixed points of interest: either a desirable state
xd

� = ((ca)d� ,(ct )d� ,(cm)d� ) with vegetation or an undesirable
global desert state xud

� . At low values of α ∈ [0,0.6], the
desirable state is attractive, while the undesirable state is
repulsive. At αcrit ≈ 0.4 a transcritical bifurcation occurs and
the fixed points reverse their stability. Anderies et al. [15] study
their model in the context of planetary boundaries interacting
with each other. In order to define a safe operating space, they
suggest to classify trajectories by whether they return to a
certain small ε ball around the desirable fixed point xd

� by a
certain critical time tcrit. Translating this into our framework,
we obtain the condition

C = {x ∈ � | ∃t < tcrit such that |φt (x) − xd
� | < ε}, (17)

where we choose ε = 10−4. The constraint formulated in
Eq. (17) is an integrated constraint since it depends on time.
The motivation for this choice of constraint is that, although
all trajectories converge to xd

� as t → ∞ for α < αcrit (since
then xd

� is globally attractive), some trajectories pass very
closely and slowly by xud

� . These trajectories would entail
catastrophic consequences for life on the planet. Therefore,
they are identified by whether they exceed a certain return
time threshold. Thus we compute CBS of the desirable fixed
point based on Eq. (17). We consider a perturbation density
ρ describing a depletion of the terrestrial carbon stock ct

(e.g., by immense wildfires). The released carbon is fed
into the atmospheric carbon stock ca . We implement this
scenario using a uniform perturbation density on a line in
phase space: the terrestrial carbon stock is depleted to a
value ct ∈ [0,(ct )d� ), while the marine carbon stays constant,
cm = (cm)d� , and the atmospheric carbon increases according
to the carbon conservation law ca = 1 − cm − ct . We draw
N = 500 initial conditions. Figure 4 shows the set C in
two-dimensional phase space for two different values of α. The
more detailed dependence of BS and CBS on α is shown in
Fig. 5: BS is discontinuous at αcrit (within numerical accuracy),
whereas CBS exhibits a smooth monotonic decay from 1 to
0 on the interval α ∈ [0.02,0.31]. This reflects the fact that
perturbations result in undesirable trajectories much more
frequently as human carbon offtake increases until, at α ≈
0.31, the return time for the considered perturbations always
exceeds tcrit. Even though α < αcrit, none of the perturbed
trajectories can avoid passing through a long quasiglobal
desert state. On this parameter interval the desired state is
unstable with respect to CBS but stable with respect to BS. We
suggest that the former measure provides a more meaningful
notion of Earth system resilience from an anthropocentric
point of view: it measures the probability that perturbations
decay within a predefined acceptable time horizon, while the

FIG. 4. Illustrations of the phase space structure of the Anderies
system, Eqs. (15) and (16). Both panels show the (globally attracting)
desirable fixed point (black dot) and the set C (red, upper part of
triangle) and its complement B/C (green, lower part of triangle) for
α = 0.15 (upper panel) and α = 0.35 (lower panel). The white dot at
(0,0.5) is the desert state fixed point. One observes that the fraction of
the two-dimensional finite phase space covered by the set C shrinks
as α increases, in agreement with Fig. 5.

latter only measures the probability of returning within any
(possibly infinite) time horizon. Further, CBS captures the
change in transient structure and therefore reveals a signal
of the transition in the Anderies model already at values of α

significantly smaller than αcrit. In contrast, BS is discontinuous
(within numerical accuracy) at αcrit and does not exhibit any
precursory phenomena. Figure 4 shows the set C defined above
in Eq. (17) and B, the basin of attraction of the desirable fixed
point for two different values of α.

IV. DISCUSSION

We have defined CBS as a generalization of BS, thereby
combining an asymptotic stability measure with information
retrieved from transient behavior into a compact and intuitive
measure. While BS is computed from an attractor’s basin,
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SB

SB

SB
C

FIG. 5. BS (straight lines) and CBS (curved red line) of xd
� and

xud
� vs the human carbon offtake rate α ∈ [0,0.6] for tcrit = 90. BS

of xd
� is represented by the green straight line (α � αcrit ≈ 0.4) and

BS of xud
� by the blue straight line (α � αcrit). At low values of α,

the desirable state is stable against any strength of perturbation while
the desert state is unstable. For α > 0.03, an increasing fraction of
perturbation-induced trajectories takes longer than tcrit to return to the
desirable fixed point until, at α ≈ 0.32, CBS vanishes. By contrast,
BS of both fixed points exhibits a jump at αcrit and thus no precursory
phenomena can be observed there. The gray envelope represents ±3σ

according to Eq. (10).

CBS is computed from a subset of the attractor’s basin. The
subset is defined by the transient behavior of trajectories
originating from this subset. Thus CBS represents potentially
very complicated transient behavior as an easy to interpret
scalar quantity.

To underpin that a compact representation of transient
behavior is highly relevant in applications, we have presented
two examples using specific constraints on the transients. In
the case of Rayleigh-Bénard dynamics in the scope of the
Lorenz63 model we used the static constraint that the sense
of rotation of convection rolls does not change. Here, CBS
uncovers nonlinear precursory phenomena of a boundary crisis
bifurcation. In the global carbon cycle model by Anderies
et al. [15], we have studied the stability of the desirable
state for a specific perturbation scenario under the premise
that it can be restored within an acceptable time horizon.
CBS reflects the fact that long return times to the attractor
after a perturbation are not desirable. More generally, these
applications demonstrate the following three main advantages
of CBS over BS. (i) CBS provides useful information in the
case of global attractors, while BS cannot be meaningfully
applied (it is always equal to 1). (ii) Sudden changes in basin
size are often preceded by a change in transient behavior.
Extending linear notions of early warning signals for incipient
bifurcations [6], CBS uncovers these nonlinear precursory
phenomena in the case of the Lorenz63 model and helps
anticipating the boundary crisis. (iii) CBS reflects the fact that
certain perturbation-induced transients are often undesirable,
e.g., long return times, thus allowing one to define highly
relevant stability measures for a specific application.

The importance of BS lies in its applicability to a wide range
of dynamical systems in various fields. The concept of CBS
is even more general as it encompasses BS as a special case.
However, to apply CBS, we must choose a specific constraint,
such as a limit on the return time. This choice strongly
depends on a specific application, revealing highly relevant
information there but potentially not being as useful in other
applications. By providing two examples of useful constraints
and by defining CBS precisely, formally, and in close analogy
to BS, we hope to facilitate the transfer of ideas between
different applications and different generalizations of BS. For
example, BS has been employed successfully to study power
grid stability [2]. CBS could be used to develop more specific
notions of stability, e.g., to impose that certain units recover
quickly from megaoutages or to constrain the total energy
loss on the way of recovery. Another example is ecology
where BS has proven to be a useful concept and transients
are important [18]. CBS could be used to quantify questions
of how fast ecosystems recover or investigate potential early
warning signals based on minimal abundances of certain
species after transients. More generally, BS has successfully
applied in resilience research [19,20] and we expect interesting
results from further investigating the notion of constrained
resilience based on constraints on transients. We expect that
future work on CBS will yield a set of transient constraints that
prove valuable across a wide range of different applications.

CBS can be used in both passive and active experimental
settings. In the former, we have only limited or no control of the
system, e.g., the Earth system. We start with some normative
notion of undesirable transients as the time threshold in the
Anderies example. Heitzig and Kittel [21] discuss desirability
in relation to phase space topology. From a given notion of
desirability, a constraint is derived. Then, CBS addresses
the question of how stable the system is with respect to
perturbation-induced transients given that only some of them
are desirable. If a system parameter varies over time, CBS is
capable of revealing a stability trend which can justify an action
to reverse the parameter change. It remains an open problem
how CBS can be inferred experimentally or from observational
data if a satisfactory model of the system is not available. In
principle, if long time series of some environmental parameter
(e.g., forest cover on the Earth’s surface) can be derived
from measurements and if many natural perturbations can be
observed in the data, such as volcanic eruptions, then these
can be exploited to estimate CBS. In the active setting, we use
CBS to foster our understanding of the system without needing
a normative proposition. The constraint and the perturbation
are chosen such that new information about the structure of
the basin of attraction is revealed. This situation is analogous
to the Lorenz63 example: restricting the number of flips
between the two halves of phase space (i.e., the two convection
senses), the basin of attraction can be subdivided according to
the number of flips. Thus CBS helps to characterize a system
that is subject to perturbations. In this active setting, it is
easier to measure CBS: the system parameters can be chosen
freely and the number of perturbations is not restricted by
historic events.

The specific condition (14) is reminiscent partly of the
concept of “viability” [22,23], although there are significant
differences: in particular, in our case, there are no man-
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agement options and, more importantly, we are considering
deterministic dynamics while viability theory incorporates
stochastic and more generally nondeterministic processes.
Furthermore, Eq. (14) can easily be generalized by allowing
for trajectories to “pierce through” H once or multiple
times—these generalizations are not related to viability theory.
Another concept that has certain features in common with the
condition (14) is “survivability” [24]. There, too, a desirable
region of phase space is designated as in the case of our
choice of C±. However, survivability does not incorporate
the asymptotic nature of BS: it depends on the fraction of
trajectories starting in a designated region of phase space
spending a certain time exclusively in that region. In particular,
it does not depend on which attractor trajectories converge to
in the long-time limit. For these reasons, CBS is different from
both viability theory and survivability and presents a broadly
applicable concept for quantifying stability of an attractor with
respect to a given not only small perturbation, uniting both the
asymptotic features of BS and the transient features of sur-
vivability. In conclusion, CBS represents a general framework
to quantify the stability of attractors with broad applicability

in various fields with an interest in complex dynamical
systems, ranging from physics and technology to sustainability
science.
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